Refine Your Search

Topic

Author

Search Results

Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Compressible Large-Eddy Simulation of Diesel Spray Structure using OpenFOAM

2015-09-01
2015-01-1858
The compressible Large-Eddy Simulation (LES) for the diesel spray with OpenFOAM is presented to reduce CPU time by massively parallel computing of the scalar type supercomputer (CRAY XE6) and simulate the development of the non-evaporative and the evaporative spray. The maximum computational speeds are 14 times (128 cores) and 43 times (128 cores) for of the non-evaporative spray and the spray flame with one-step reaction, respectively, compared to the one core simulation. In the spray flame simulation with the reduced reaction mechanism (29 species, 52 reactions), the maximum computational speed is 149 times (512 cores). Then LES of the non-evaporative and the evaporative spray (Spray A) are calculated. The results indicate that the spray tip penetration is well predicted, although the size of the computational domain must be set equal to that of the experiment.
Technical Paper

OH Radical Generation and Soot Formation/Oxidation in DI Diesel Engine

1998-10-19
982630
OH radical generated in a DI diesel engine has a close relationship to soot oxidation. To clarify this fact, the distribution of the natural emission of OH radical was captured by means of an interference filter system and that of soot was detected by the simultaneous application of a laser induced incandescence (LB) and a laser induced scattering (LIS). The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The generation of OH radical and the formation/oxidation of soot are discussed by using both images.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems

2000-03-06
2000-01-1258
In previous our work, we revealed that the flash boiling process could improve remarkably the spray atomization for the pure substance-single component fuel in relation to the port-injected S.I. engines. Then, we applied this flash boiling spray to the Diesel spray process by the use of the two phase region formed between liquefied CO2 and n-Tridecane as the first step of fuel design concept. And the promoted atomization properties could be obtained in this mixed fuel concept. Further, we could obtain the simultaneous reduction of NO and soot emissions in Diesel engine exhaust due to the spray internal EGR effect and reburning of soot. As the second step, we proposed a novel fuel design concept for low exhaust emission and combustion control, relating to mixed and reformulated fuels with a lower boiling point fuel such as gasoline components or gas fuel and a higher boiling point fuel such as gas oil or heavy oil components to obtain the both advantages of their fuels for combustion.
Technical Paper

Variation in Nerve Fiber Strain in Brain Tissue Subjected to Uniaxial Stretch

2007-10-29
2007-22-0006
Diffuse axonal injury (DAI) is the most frequent type of closed head injury involved in vehicular accidents, and is characterized by structural and functional damage of nerve fibers in the white matter that may be caused by their overstretch. Because nerve fibers in the white matter have an undulated network-like structure embedded in the neuroglia and extracellular matrix, and are expected to be much stiffer than other components, the strain in the nerve fiber is not necessarily equal to that in the white matter. In this study, the authors have measured strain of the nerve fibers running in various directions in porcine brain tissue subjected to uniaxial stretch and compared them with global strain (tissue strain). The nerve fiber strain had a close correlation with their direction, and was smaller than surrounding global strain.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
X